1. 首页 » 生活技巧

特征值怎么求(线性代数中的二次型)

线性代数中的二次型,实际上是特征值的几何应用,概念仍需加强理解

二次型:实际上是特征值的几何应用

1、二次型化标准形:特征值、特征向量、相似对角化

2、二次型的正定性

3、合同:坐标变换

正交变换化二次型为标准形,标准为求二次型矩阵 A 的特征值,求坐标变换就是求 A 的特征向量

接下来我们来看道例题,首先是第一小题

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图一

首先,我们肯定是要读题,通过题目来了解一些明显的信息

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图二

这个是之前谈到过的概念了,二次型的方程可以直接得到二次型矩阵

化简方法为:xixj系数的一半位于矩阵的ij位置(i为第i行,j为第j列)

因为二次型的矩阵一定是实对称矩阵,所以也要将xixj系数的一半位于矩阵的ji位置(j为第j行,i为第i列),然后对角线的话也是按照这个规则来,那很明显,对角线就是11,22,33

因为秩为 2,所以可以得到 r(A)=2,再得到行列式为 0,因为根据已有条件可知道,当 n 阶行列式的秩小于 n 时,行列式的值为 0

所以得到 a=0

再来看第二小题

通过正交变换x=Qy,将f(x1,x2,x3)化为标准形

由第一小题a=0可以知道(将a代入到式子中去来求矩阵A的特征值)

这里过程不详细叙述了,行列式λE-A等于0,来求矩阵A的特征值

我直接计算出特征值为2和0

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图三

由于特征向量已经两两正交,那么我们只需要单位化即可

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图四

那么,经过正交变化x=Qy就可以得到

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图五

由于f(x1,x2,x3)=0,那么我们就可以得到

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图六

注意点:1、n 阶矩阵 A 的秩小于 n 时,那么 A 的行列式就等于 0,而行列式等于所有特征值的 乘积,所以至少有一个特征值为 0

2、如果 n 阶矩阵 A 的秩小于 n 时,可以得到该矩阵不可逆,因为可逆矩阵的充要条件是行列式 的值不为 0

3、正交变换:可以化二次型为标准型,就如我们前面用到的

完整过程步骤

线性代数中的二次型,实际上是特征值的几何应用,概念需加强理解

图七

总结

总的来说,线性代数需要记忆的概念还是比较多的,二次型化为标准形的时候,主要要借助到一些概念,例如矩阵的秩、特征值和特征向量等等,我对这块掌握还不够完善,仍需努力,加强理解!

声明:本文由"麦兜"发布,不代表"知识分享"立场,转载联系作者并注明出处:https://www.029ipr.com/life/22073.html